93 research outputs found

    Static capacitive pressure sensing using a single graphene drum

    Full text link
    To realize nanomechanical graphene-based pressure and gas sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electro-mechanical systems (MEMS), gets increasingly challenging as one starts shrinking the dimensions of these devices, since the expected responsivity of such devices is below 0.1 aF/Pa. To overcome the challenges of detecting small capacitance changes, we design an electrical readout device fabricated on top of an insulating quartz substrate, maximizing the contribution of the suspended membrane to the total capacitance of the device. The capacitance of the drum is further increased by reducing the gap size to 110 nm. Using external pressure load, we demonstrate successful detection of capacitance changes of a single graphene drum down to 50 aF, and pressure differences down to 25 mbar

    Exchange Splitting and Charge Carrier Spin Polarization in EuO

    Full text link
    High quality thin films of the ferromagnetic semiconductor EuO have been prepared and were studied using a new form of spin-resolved spectroscopy. We observed large changes in the electronic structure across the Curie and metal-insulator transition temperature. We found that these are caused by the exchange splitting of the conduction band in the ferromagnetic state, which is as large as 0.6 eV. We also present strong evidence that the bottom of the conduction band consists mainly of majority spins. This implies that doped charge carriers in EuO are practically fully spin polarized.Comment: 4 pages, 5 figure

    New class of T-prime-structure cuprate superconductors

    Full text link
    High-temperature superconductivity has been discovered in La2-xBaxCuO4 [1], a compound that derives from the undoped La2CuO4 crystallizing in the perovskite T-structure. In this structure oxygen octahedra surround the copper ions. It is common knowledge that charge carriers induced by doping in such an undoped antiferromagnetic Mott-insulator lead to high-temperature superconductivity [2- 4]. The undoped material La2CuO4 is also the basis of the electron-doped cuprate superconductors [5] of the form La2-xCexCuO4+y [6,7] which however crystallize in the so called T-prime-structure, i.e. without apical oxygen above or below the copper ions of the CuO2-plane. It is well known that for La2-xCexCuO4+y the undoped T-prime-structure parent compound cannot be prepared due to the structural phase transition back into the T-structure occuring around x ~ 0.05. Here, we report that if La is substituted by RE = Y, Lu, Sm, Eu, Gd, or Tb, which have smaller ionic radii but have the same valence as La, nominally undoped La2-xRExCuO4 can be synthesized by molecular beam epitaxy in the T-prime-structure. The second important result is that all these new T-prime-compounds are superconductors with fairly high critical temperatures up to 21 K. For this new class of cuprates La2-xRExCuO4, which forms the T-prime-parent compounds of the La-based electron doped cuprates, we have not been able to obtain the Mott-insulating ground state for small x before the structural phase transition into the T-structure takes place.Comment: 17 pages, 7 figure

    Work function changes in the double layered manganite La1.2Sr1.8Mn2O7

    Full text link
    We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as a function of temperature by means of photoemission. We found a decrease of 55 +/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of the sample. Above T_C the work function appears to be roughly constant. Our results are exactly opposite to the work function changes calculated from the double-exchange model by Furukawa, but are consistent with other measurements. The disagreement with double-exchange can be explained using a general thermodynamic relation valid for second order transitions and including the extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex

    Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6-based heterostructures

    Get PDF
    Two-dimensional magnetic materials with strong magnetostriction are attractive systems for realizing strain-tuning of the magnetization in spintronic and nanomagnetic devices. This requires an understanding of the magneto-mechanical coupling in these materials. In this work, we suspend thin Cr2Ge2Te6 layers and their heterostructures, creating ferromagnetic nanomechanical membrane resonators. We probe their mechanical and magnetic properties as a function of temperature and strain by observing magneto-elastic signatures in the temperature-dependent resonance frequency near the Curie temperature, TC. We compensate for the negative thermal expansion coefficient of Cr2Ge2Te6 by fabricating heterostructures with thin layers of WSe2 and antiferromagnetic FePS3, which have positive thermal expansion coefficients. Thus we demonstrate the possibility of probing multiple magnetic phase transitions in a single heterostructure. Finally, we demonstrate a strain-induced enhancement of TC in a suspended Cr2Ge2Te6-based heterostructure by 2.5 ± 0.6 K by applying a strain of 0.026% via electrostatic force

    Bulk Electronic structure of Na0.35_{0.35}CoO2_{2}.1.3H2_{2}O

    Full text link
    High-energy (hν\nu = 5.95 keV) synchrotron Photoemission spectroscopy (PES) is used to study bulk electronic structure of Na0.35_{0.35}CoO2_{2}.1.3H2_{2}O, the layered superconductor. In contrast to 3-dimensional doped Co oxides, Co 2p\it{2p} core level spectra show well-separated Co3+^{3+} and Co4+^{4+} ions. Cluster calculations suggest low spin Co3+^{3+} and Co4+^{4+} character, and a moderate on-site Coulomb correlation energy Udd∼_{dd}\sim3-5.5 eV. Photon dependent valence band PES identifies Co 3d\it{3d} and O 2p\it{2p} derived states, in near agreement with band structure calculations.Comment: 4 pages 4 figures Revised text added referenc

    Effectiveness of Shockwave Treatment Combined With Eccentric Training for Patellar Tendinopathy:A Double-Blinded Randomized Study

    Get PDF
    OBJECTIVE: To evaluate the effectiveness of a combined treatment of focused shockwave therapy (ESWT) and eccentric training compared with sham-shockwave therapy (placebo) and eccentric training in participants with patellar tendinopathy (PT) after 24 weeks. DESIGN: Randomized controlled trial. SETTING: Sports medicine departments of a university hospital and a general hospital in the Netherlands. PARTICIPANTS: Fifty-two physically active male and female participants with a clinical diagnosis of PT (mean age: 28.6 years; range, 18-45) were randomly allocated to the ESWT (n = 22) or sham shockwave (n = 30). INTERVENTIONS: Extracorporeal shockwave therapy and sham shockwave were applied in 3 sessions at 1-week intervals with a piezoelectric device. All participants were instructed to perform eccentric exercises (3 sets of 15 repetitions twice a day) for 3 months on a decline board at home. MAIN OUTCOME MEASURES: The Victorian Institute of Sport Assessment-Patella (VISA-P) scores (primary), pain scores during functional knee loading tests, and Likert score (secondary) were registered at baseline and at 6, 12, and 24 weeks after the start with the ESWT or sham-shockwave treatment. RESULTS: No significant differences for the primary and secondary outcome measures were found between the groups. In the ESWT/eccentric group, the VISA-P increased from 54.5 ± 15.4 to 70.9 ± 17.8, whereas the VISA-P in the sham-shockwave/eccentric group increased from 58.9 ± 14.6 to 78.2 ± 15.8 (between-group change in VISA-P at 24 weeks -4.8; 95% confidence interval, -12.7 to 3.0, P = 0.150). CONCLUSIONS: This study showed no additional effect of 3 sessions ESWT in participants with PT treated with eccentric exercises. The results should be interpreted with caution because of small sample size and considerable loss to follow-up, particularly in the ESWT group

    Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Get PDF
    Abstract This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators
    • …
    corecore